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Polarized small-angle light scattering from gels estimated in terms of a statistical approach
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To analyze polarized light scattering patterns from gels, an approach is proposed to calculate the scattered
intensity. In the proposed model system, difference between polar angles of the principal axes of the ith and jth
elements, which were defined with respect to the axis along the distance between two elements, was given as
a correlation of the distance between the two elements. Furthermore, the azimuthal angle, which makes a
projection of the jth principal axis onto a plane perpendicular to the principal axis of the ith element, was also
given as a correlation of the distance between the two elements. The theoretical calculation was carried out for
the scattered intensity under Hv and Vv polarization conditions. The general equations proposed for Hv and Vv
scattering were based on a statistical approach for polarized light scattering system. The calculated pattern
under the Hv polarization condition showed an X-type pattern and was in good agreement with the pattern
observed from polymer gels prepared by quenching their solutions to the desired temperatures.
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I. INTRODUCTION

Light scattering from anisotropic density fluctuations was
first developed by Debye and Bueche [1], and the theory was
expanded to the scattering of light from a polymer film with
randomly correlated orientation fluctuations of anisotropic
elements by Stein and Wilson.[2] According to their paper,
polarized light scattering intensities /p, and Iy,,, were formu-
lated under Hv and Vv polarization conditions, in which Hv
and Vv are horizontal and vertical components, respectively,
of scattered intensity observed by using a vertically (v) po-
larized incident beam. The formulated equations are as fol-
lows:
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In Eq. (1.2), y(r) is a correlation function for fluctuations
associated with the mean-square fluctuation in average polar-
izability (7?),,. In Egs. (1.1) and (1.2), f(r) is an orientation
correlation function of the principal axes between two scat-
tering elements and w'(r) is given by
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where & is the average anisotropy, (A%),, is a mean-square
fluctuation in average optical anisotropy, and ¢(r) is the cor-
relation function associated with the fluctuation in the mag-
nitude of the anisotropy normalized by (A2),,, which shall be
discussed later in detail. If the axis ratio of the polarizability
ellipsoid remains constant, J fluctuates only because of the
fluctuations in average polarizability. Under these conditions,

(A%)ql & = (o7 Yl (1.5)
and ¢(r)=(r), in which « is the average polarizability. It is
well known that if there is no orientation fluctuation of the

scattering elements (f(r)=0),1y, becomes zero, while Iy, be-
comes

sinh r
hr

rdr.
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The above equation is similar to the equation by Debye and
Bueche [1], which has been generally used to analyze the
structure in terms of the profile of y(r) [3—6]. As for polymer
gels, Pines and Prins applied to the analysis of swollen real
networks within gels [3,4] by assuming that y(r) is described
by a sum of Gaussians.

However, when solutions of crystalline polymers such as
poly(vinyl alcohol) (PVA) [7] and agarose [8] solutions were
quenched to the desired temperature, the phase separation
was confirmed under the gelation-crystallization process.
Namely, when the vertical polarized incident beam was di-
rected to the solution under no existence of the analyzer, the
logarithm of the scattered intensity increased linearly in the
initial stage of the phase separation and tended to level off in
the later stage. In the initial stage, the corresponding Hv
scattering showed a circular pattern with very weak scattered
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FIG. 1. Light scattering pattern from polymer gels. (a) An usual
method to take the photo of the pattern. (b) The pattern reflected on
the gel surface by the analyzer is taken by a commercial camera

intensity, in addition to the corresponding circular Vv scat-
tering pattern with weak intensity. This indicates that the
resultant polymer-rich phases are composed of scattering el-
ements with orientation fluctuations. In such a condition, it is
impossible to analyze the progression of the phase separation
of the gels based on y(r) by using Eq. (1.6). Matsuo et al.
[7,8] used the following equation proposed by Stein and Wil-
son [2] to obtain y(r) from such circular profiles of Hv and
Vv scattering:

sinh r
hr

A -
Iy, = 31n,= KT ) . yr)——r’dr.  (1.7)

In the actual analysis, the correlation distance estimating the
extension of the inhomogeneities can be obtained by assum-
ing that y(r) in Egs. (1.6) and (1.7) is generally described by
a sum of Gaussians [3,4,7,8].

However, progression of the phase separation of solutions
provided gelation and the resultant gel became stiffer with
time, indicating an increase in cross-linking points. The cor-
responding Hv pattern changed from a circular to an X type
similar to the scattering from anisotropic rods, the optical
axis being parallel or perpendicular to the rod axis [9,10],
and the pattern becomes clearer with time. In accordance
with our experimental results [7,8], the pattern under Hv
polarization conditions was very weak and the pattern could
not be observed on the photoscreen as shown in Fig. 1(a)
represented as a schematic diagram, since the very weak
light scattered from the gels cannot pass through the ana-
lyzer. The pattern was observed on the sample surface by the
reflection from the analyzer, and then the photographs were
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taken by a commercial camera as shown in Fig. 1(b) [7,8].
Such weak scattered light is attributed to no existence of
clear superstructure. Namely, the corresponding polarized
microscopy showed a dark vision and any superstructure
could not be observed, indicating that the size is not much
longer than the wavelength of the He-Ne gas laser. We must
emphasize that the X-type pattern from such a system is
quite different from the scattering from anisotropic rods re-
ported for the X-type scattering from poly(tetrafluorethylene)
(PTFE) films [9,10]. In such a system with X-type patterns,
the rods could be observed within the PTFE films clearly
under polarized microscopy.

Accordingly, it is evident that the X-type pattern from
such gel structures cannot be analyzed by using successful
theories that have been proposed on the basis of structural
models such as rods [9-11], spherulites [12,13], other tissues
[14-16], and multiple light scattering [17]. Of course, the
analysis by Eq. (1.7) is meaningless unless the initial stage of
the phase separation provides circular-type patterns under
Hv and Vv polarization conditions. Anyway, it is obvious
that very weak scattered intensity from the gels under Hv
polarization conditions has been obstructive to study the
structure of anisotropic physical gels. Actually, there has
been no report for polarized light scattering from anisotropic
gels except our previous papers [7,8].

This paper deals with a theoretical analysis of polarized
light scattering from the gels, whose Huv scattering can be
observed as an X-type pattern by the unusual method in Fig.
1(b), in terms of a statistical approach. In this process, the
density and orientation fluctuations are represented sepa-
rately as each nonrandomly correlated fluctuation, as esti-
mated by Stein and Wilson [2]. To represent the azimuthal
angle dependence, a new coordinate system for the principal
polarizabilities of the scattering volume elements must be
adopted. This general theory can be widely applied to a
structural analysis of anisotropic tissues such as gels, surfac-
tants, and liquid crystals with orientation fluctuations be-
tween scattering elements. Of course, the theoretical calcula-
tion was provided in terms of Rayleigh-Gans theory, apart
from complicated concept of Mie theory, which has been
applied to isotropic spherulites [18,19].

II. EXPERIMENT

Agarose was used as a test specimen. Agarose produced
for the measurement of electrophoresis was purchased from
Wako Junyaku Co. Ltd. The contents of sulfate and sulphur
are less than 1.0% and 0.3%, respectively. The strength of
gels is less than ca. 0.6 MPa. Distilled water (H,0) was used
as a solvent. The solution in a glass tube was prepared by
heating the well-blended polymer/solvent mixture at 80 °C
for 20 min under nitrogen. The sample was set in the sample
holder of a light scattering instrument which had been con-
trolled at 80 °C and quenched to the desired temperature.
The time dependence of the scattered intensity was measured
by using a vertically polarized He-Ne gas laser beam without
an analyzer.

Small-angle light scattering (SALS) under Hv polariza-
tion conditions was observed with a 15-mV He-Ne gas laser
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FIG. 2. Change in ¢n(l) at #=15° and Hv light scattering pat-
terns with time, which were measured for 1.0% and 2.5% agarose
aqueous solutions at 30 °C.

as a light source. The light scattered from the gels could not
pass through the analyzer. The reflected pattern on the gel
surface was detected by a commercial camera as shown as a
schematic diagram in Fig. 1(b), because the Hv pattern is not
due to the scattering from anisotropic superstructures whose
sizes are longer than the wavelength of the He-Ne gas laser
but is due to the orientation correlation of optical axes.

The x-ray measurements with Cu Kea radiation were car-
ried out with a 12-kW rotating-anode x-ray generator
(Rigaku RDA-rA) operated at 200 mA and 40 kV. The x-ray
beam was monochromatized with a curved graphite mono-
chrometer. The time resolution of the WAXD intensity was
done to study the gelation mechanism by using a curved
position-sensitive proportional counter (PSPC) to estimate
the change in diffraction intensity distribution as a function
of the Bragg angle. The sample preparation was done by a
procedure similar to the light scattering measurement.

To determine the gelation time, a test tube containing the
solution in a water bath at constant temperature was titled at
every 5 sec after standing 60 sec. When the meniscus de-
formed but the specimen did not flow under its own weight,
we judged that the solution had gelled. The shortest time at
which the onset of gelation occurred was defined as the ge-
lation time.

III. RESULTS

Figure 2 shows the change in the logarithm plots of the
scattered intensity [n(/)] of a He-Ne gas laser with a verti-
cally polarized incident beam (measured without an ana-
lyzer) at a fixed scattering angle of 15° as well as the change
of the corresponding Hv pattern against time. The measure-
ments were carried out for 1.0% and 2.5% agarose aqueous
solutions at 30 °C. The gelation by the phase separation of
the solution occurred at 180 and 120 sec for the 1.0% and
2.5% solutions, respectively. Hv scattering showed an indis-
tinct circular type, indicating the formation of a random ar-
ray of quasicrystallites smaller than the wavelength of the
incident beam, in the time scale showing the straight line of
€n(I) versus time ¢. This mechanism, similar to the behavior
of the spinodal decomposition of amorphous blends [20], has
been analyzed in terms of the initial stage of the phase sepa-
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FIG. 3. Time-resolved WAXD intensity distribution as a func-
tion of twice the Bragg angle from 2.5% agarose aqueous solutions
after quenching at 45 °C (upper column) or 25 °C (lower column).

ration of the solution to resolve thermodynamic unstable
state by Feke and Prins [21] and Matsuo et al. [7,8]. With the
elapsing time, the plots of €n(I) versus ¢ deviate from the
straight line and the corresponding Huv scattering pattern
changed from a circular type to an X type, indicating the
existence of optically anisotropic rodlike textures, the optical
axes being oriented parallel or perpendicular to the rod axis
[9,10]. In this system, further detailed analysis provided that
the spinodal temperatures of the 1.0% and 2.5% agarose
aqueous solutions are 47.0 and 49.8 °C, respectively [8],
which was estimated on the basis of the concept concerning
the initial stage of spinodal decomposition by Cahn and Hil-
liard [22]. With the further lapse of time, the Huv pattern
became more distinct, indicating an increase in the number
of rods associated with the gradual development of gelation.
Nevertheless, the corresponding polarized microscopy
showed a dark vision and any anisotropic rods could not be
observed in the given time range. Incidentally, the Vv scat-
tering corresponding to an X-type pattern of Hv scattering
showed a circular-type pattern. Because of the very strong
polarized intensity of an incident beam, however, the de-
tailed shape of the scattering pattern was too indistinct to
take photographs of the Vv configuration.

A question can arise as to whether quasicrystallites with
crystal lattice fluctuations were performed in the rods. To
check this phenomenon, the x-ray diffraction intensity distri-
bution was measured as a function of time, when the solution
at 80 °C was quenched to 25 or 45 °C immediately. Figure 3
shows the results. The gelation times were 70 and 290 sec at
25 and 45 °C, respectively. The x-ray intensity shows a broad
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FIG. 4. Optical and coordinate system of light scattering con-
cerning the principal polarizabilities of the scattering elements.

peak associated with the scattering due to the ordering of
water molecules, and no diffraction peak from agarose crys-
tallites is detected. The apparent observation reveals that
crystallization did not occur even after 72 h. This indicates
that the formation of stiff gels is independent of crystalliza-
tion. This is due to the fact that (1) the molecular arrange-
ment within the gel is too poor to derive the appearance of
quasicrystallites and/or (2) cross-linking points of quasicrys-
tallites are too few to detect by x-ray diffraction. Accord-
ingly, it is evident that the X-type patterns are independent of
scattering from anisotropic rods as the aggregation of small
crystallites. Of course, as described before, the correspond-
ing polarized microscopy showed a dark vision and any su-
perstructure could not be observed.

Here it should be noted that Eq. (1.7) can be applied to the
characteristics of gels whose scattering shows a circular pat-
tern in the initial stage, assuring a straight line of €n(I) ver-
sus time ¢. Namely, the values of the correlation distance
estimating the extension of the inhomogeneities could be ob-
tained by assuming y(r) to be the sum of Gaussian functions,
which was discussed elsewhere [8]. On the other hand, we
must emphasize again that the analysis of the X-type pattern
under Hv polarization conditions cannot be explained by the
scattering from anisotropic rods and the following theoretical
approach is needed.

IV. THEORY

The scattering system is proposed as schematic diagrams
in Fig. 4 to calculate Hv and Vv scatterings. Efforts are made
to use the same notation proposed by Stein and Wilson [2] as
much as possible to make clear the difference between the
present model and Stein’s model. As shown in Fig. 4, an
incident beam denoted by a unit vector s, is propagated
along the X, direction and the scattered vector denoted as a
unit vector s’ is detected as a function of the scattering angle
0 and azimuthal angle u taken from the vertical direction X5.
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The unit vectors i,j, and k are taken along the X;,X, and X3
directions, respectively. In this system, the scattered intensity
is given by

I= E E A,'AJ‘COS{ZTW(I'U : S)} = E 2 AiAjCOS[k(rij -s)],
iJ J

4.1)

where A; and A; are the amplitudes of scattered intensity
from the ith and jth volume scattering elements, respectively,
A is the wavelength of light in the medium, r;=r;-r; is
the vector between the ith and jth volume elements, and
s=sy—s’. A; is proportional to the component of the dipole
M, induced in the ith scattering element by the light wave
which is perpendicular to the propagation direction of the
scattered ray and which is passed by a polarizer in the scat-
tered light path—that is, if O is a unit vector perpendicular to
s’ and along the direction of polarization of the polarizer in
the scattered beam, in which O corresponds to k and j for Vv
and Hv polarizations, respectively. That is,

A;=C[M;- 0] (4.2)

where the dipole moment induced by the effective applied
field E(=E(k) is given by

3 3

M; = 2 a;(E-ug)ug; or M; = 2 a;(E-ag)ay;.
=1 =1

(4.3)
The above equation is formulated in the general anisotropic
volume element with no cylindrical symmetry, and the prod-

uct M;- O for Vv and Hv polarization conditions is given by,
for Vv scattering,

M; - O ={a; (u};- K)* + ap(uy - K)* + a;3(u;; - k) E,

(4.4)
and, for Hv scattering,
M; - O ={a;(uy;- K)(uy; - j) + ap(uy; - k) (uy - j)
+ ap(uy; - K)(uy; - j)IE,, (4.5)

where u;;,u;,, and u;3 are unit vectors along the U;;, U,,, and
U;; axes, respectively, for representing the three principal
axes of the ith scattering element.

If the scattering element is rotational symmetry with re-
spect to the Uj axis, it may be described by two polarizabil-
ities (e); in the principal direction of the unit vector us and
(a)); perpendicular to this direction. That is, a;=ap
=(a,); and ai3=(a'||)i-

The average polarizability of the ith volume element «; is

;= %[(aH)i"' 2(ay)]. (4.6)

When the anisotropy of the ith volume element is specified
by 8=(q—a,);, we have
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Thus the scattered intensities under Vv and Hv polarization
conditions may be given as follows: for Vv scattering,

CZE{( 1)l

+ |:5j<ai - %@)(uaj -k)* + 51'(%' - %51)(“31' : k)z}

+[4, i6j(us; - k )2(113j'k)z]}cos[k(rij‘s)],

(4.9)
and for Hv scattering,
_C22 E 5(“%, )(ug; - .])(“3/ k)
X (u3; ~j)cos[k(r,-j -s)]. (4.10)

In the present model system, the ith volume element has
three kinds of fluctuations: (1) the average polarizability «;,
(2) the anisotropy &, and (3) the orientation of the principal
axis Us;. To simplify the theoretical calculation, as discussed
by Stein and Wilson [2], it may be assumed that the aniso-
tropy fluctuations are not correlated with the fluctuations of
average polarizability. Here we shall define

ni=a; - a, (4.11)
where « is the average polarizability, and
A;=6-6, (4.12)

where 6 is the average anisotropy.
As discussed by Stein and Wilson [2], the first term of Eq.
(4.9) may be given by

g
MY N (N NON|

1 1

Of course, this must be multiplied by cos[k(r;-s)] and
summed over all values of r;. On summing, the (a-6/3)
term gives zero, since this corresponds to scattering from a
homogeneous medium. The second term, the products of #;
or A;, and cos[k(r;;-s)] average to zero, because r;; depends
on the positions of both volume elements i and j, Whlle 7; or
A; depends only the position of i. Consequently, if i is fixed
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FIG. 5. Schematic diagram showing the coordinate systems for
calculating light scattering. (a) Euler angles w;; and ¢;; of the prin-
cipal axis (U3J) of the jth element with respect to the Cartesian
coordinates 0-U,;U,;Us; within the ith element. (b) Euler angles ©
and @ specifying the orientation of the Cartesian coordinates 0-pgh
with respect to the other Cartesian coordinates 0-X;X,X3 fixed
within a gel specimen, in which the p and ¢ axes are perpendicular
to the & axis. (b) Euler angles « and B specifying the orientation of
the Cartesian coordinates 0-V;V,V; with respect to the Cartesian
coordinates 0-pgh. (d) Euler angles w; and ¢; specifying the orien-
tation of the Cartesian coordinates 0-U,U,U; fixed within the ith
element with respect to the Cartesian coordinates 0-V;V,V;.

and one sums over all values of j, the sum will be positive
and negative with equal frequency.

Furthermore, a correlation function for fluctuations in the
average polarizability was defined by Debye and Bueche [1]
as follows:

’)/(7‘) = <7]i 7]}>r/< 772>qu

where (7,7,), represents an average over all pairs of volume
elements at constant scalar separation r and (7°),, is the
mean-square fluctuations in average polarizability.

Furthermore, Stein and Wilson [2] defined a similar cor-
relation function for fluctuations in the magnitude of the an-
isotropy as

(4.14)

W) = (A ), (A%

As discussed in the Introduction, it is evident that & fluc-
tuates only because of the fluctuations in average polarizabil-
ity, if the axis ratio of the polarizability ellipsoid remains
constant. Under these conditions,

(A%) ! 8 = (7)o @

(4.15)

(4.16)
and (r)=y(r).
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To pursue the theoretical calculation based on the model
system in Fig. 4, the following four Cartesian coordinates are
proposed in Fig. 5.

In coordinate (a) in Fig. 5, the unit vector us; along the
Us; axis is given by

U3j=a;=Ccos w;juz;+ sin w;;sin ¢;jlt,; + sin w;;cos ¢;u y;,
(4.17)

where w;; is the angle between the principal axis of the ith
element and that of the jth element and depends on the
length of r;; connecting the ith and jth elements but not on
the direction a. Here ¢;; is the azimuthal angle of the Us;
axis (the principal axis of the jth element) in the coordinate
0-U,;,U,;,Us; of the ith element and also depends on the
length of r;; but not on the direction a. Following Stein and
Wilson [2], ¢;; was random around the Uj; axis, and conse-
quently their calculation induced independence of the azi-
muthal angle w of the scattered intensity distribution [see
Egs. (1.1) and (1.2)]. Obviously, their analysis has a serious
defect, since ¢;; must be dependent on the length of r;;. It is
reasonable that ¢;; must be essentially zero at r;=0, since
the ith element coincides with the jth element for gel struc-
tures. Furthermore ¢;; is generally not random because of

— COS—COS
5 M
0 .0 I
= sin—
d 2
r
_Jn
where
,0 0

J=cos?=sin®u + sin®—. 4.21
S S > (4.21)

Here we shall define the unit vectors vs,v,, and v, along the
V3,V,, and V| axes, respectively, in which v; is a unit vector
of r;; along the V5 axis. Hence, from coordinate (c), we have

V3 cosa sinasinf sinacosfB \[h
v, |= 0 cos B —sin 8 q
v, —sina cosasin B cosacos B/ \p

(4.22)

In the above system, the product (r;;-s) is given by

—cosZsin u
2

cosz—esin weos uJ 12— singcos—cos wt-
2 2 2
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poor molecular chain mobility within gels. As described al-
ready, the Hv scattering from the gels provided a very weak
X-type pattern similar to the scattering from anisotropic rods,
although polarized microscopy showed dark sight.

To give the u dependence of the scattered intensity distri-
bution, the following new coordinates (b), (c), and (d) in Fig.
5 are needed [23]. By using coordinate (b), the orthogonal
matrices of the coordinate transformation with respect to the
coordinates are given by

h cos sin®sin® sin®cos® \ [k
q|= 0 cos @ —sin @ il
r —sin® cos®sin® cosOcosdP/\i

(4.18)
where h is given in relation to cos[k(r-s)] as follows:

s = (27/\)[(1 = cos 6)i — sin @ sin uj — sin O cos pk]

0
= (477/)\)sin5h=hh. (4.19)
h,p, and q are unit vectors perpendicular to each other.
In comparison with Eq. (4.19), Eq. (4.18) can be written
as follows:

sin—
2

0
cosESin wJ 12 , (4.20)

[

172

47 0
(r;;-s)=r;h(vs-h) = Tsmirucos a= hr;cos a.

(4.23)

In coordinate (d), the Euler angles w; and ¢; specify the
orientation of the Cartesian coordinates 0-U,U,U; fixed
within the ith element with respect to the Cartesian coordi-
nates 0-V;V,V;. Then we have

us; cos w; sin w;sin ¢; sin w;cos ¢; \ [ V3

w,; | = 0 cos ¢; —sin ¢; \

uy; —sin w; €os w;sin ¢; cos w;cos ¢; / \v,
(4.24)

(M;-0) (M;-0) for Hu scattering can be obtained by us-
ing Egs. (4.10), (4.17), and (4.19)—(4.23). However, the re-
sult is too much complicated to be written explicitly, and
then the mathematical derivation is not represented.
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Now, after integrating the resultant complicated equation
by w,, ¢;, and B with random orientation, we have

( 1 /3 cos’w;;— 1
IHU:CZI f w(r)y — Sl k] +(2 cos’¢;
0 0 15 2 Iy X

]
3 cos’w;; — 1 1
-1, |1- SC08 @y 2 —(5 cos*a
ij 2 720

1
+30cos’a—11) — —cos? —(5 cos*a + 6 cos’a - 3)

144
1,0,
+ ——cos*=sin?2 w(35 cos*a — 30 cos’a + 3)
576 2

Xcos[hr;jcos a]r sin adrda, (4.25)

where
, (A 2>au
() =1+—2=(r). (4.26)

' (r) is equal to u(r) defined by Stein and Wilson [2] but in
the present paper u is used as the azimuthal angle of the
scattered beam as shown in Fig. 4. Hence u'(r) is used in-
stead of wu(r).

An orientation correlation function associated with the
angle between two principal axes is defined by Stein and
Wilson [2]. By omitting the dummy subscript ij for Tije, it is
given by

2
£ = <3C°—52“’L1> , (4.27)

where the average is taken over all pairs of volume elements
(i and j) separated by a constant scalar distance r. f(r)=1 for
parallel orientation (w;=0°) and O for random orientation
(w; It random), and it varies between these limits as r changes
from zero to infinity. The distance over f(r) remains large as
a measure of the size of a region within which principal axes
tend to have parallel orientation.

Furthermore, as discussed before, it is important to con-
sider that the azimuthal angle, which the projection of the jth
principal axis onto a plane perpendicular to the principal axis
of the ith element makes, is also given as a correlation of the
distance between the two elements. In this paper, the corre-
lation function g(r) is defined as

g(r)=(2 cos’¢;; - 1),, (4.28)
where the average is taken over all pairs of volume elements
(i and j) separated by a constant scalar distance r. g(r)=1 for
parallel orientation (¢;;=0°) and 0 for random orientation (
bij: random), and it varies between these limits as r changes
from zero to infinity.

In this case, Iy, can be written as follows:
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e[| u’m{%f(r) + 01 /0]
0 J0

1
X —(5 cos*a + 30 cos’a — 11)
720

1
— ——cos —(5 cos*a + 6 cos’a - 3)
144

1 0
+ —cos4—sin22,u,(35 cos*ar— 30 cos’a + 3)
576 2

X cos[hr cos a]r’sin adrda. (4.29)

Equation (4.29) means that u'(r) is independent of the
shape of the scattering pattern because of no u-dependence,
while g(r) and f(r) are sensitive to the profile of the scatter-
ing pattern. If ¢;; is random, g(r) becomes zero. In this case,

Iy, = —K52J f "(r)f(r)cos[hr cos a]r’sin adrda.

(4.30)

This equation can be integrated by « and reduces to Eq. (1.1)
derived by Debye and Bueche [1].

By using a similar method to the calculation procedure for
Hu scattering, the Vv scattering intensity can be obtained as
follows:

=] {(ﬁmm— <M>u()

2

3 cos’w;; — 1
+ 52<2 Cosz¢,~j— l>,{l - <M> }

2
(A 2>av

s @y ( )
v, + )y, +cos2u| Iy + (r)ly,

+ cos 4,u,u,’(r)lvs] }cos[hr cos alr’sin adrda, (4.31)

where

1 1
Iy = —(15 cos*a— 30 cos’a+7) — —cos’= (5 cos*a
720 48 2

1 0
-6 cos’a+ 1) + —0054—(35 cos*ar =30 cos’a + 3),
384 2
(4.32)
1
Iy, = ——(45 cos*a + 30 cos’a — 19) — —cos? —(15 cos*a
22160 144

1
—6cos’a—1)+ 384°% 7 —(35 cos*a — 30 cos’a +3),

(4.33)
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Jin

Y

FIG. 6. The coordinate system for the principal polarizabilities
of the scattering elements proposed by Stein and Wilson [2].

| 0
Iy = —cos’= (=5 cos*al + 6 cos’a— 1)
348 2

1 0
+ ——cos*=(35 cos*a — 30 cos’a+3), (4.34)
288 2

0
Iy = —cosz—(— 15 cos*a + 6 cos’*a — 1)
4144 2

1 0
+ ——cos*=(35 cos*a — 30 cos’a +3), (4.35)
288 2

1
Iy = ——
s7 1152

By using Egs. (4.27) and (4.28), Eq. (4.31) can be rewrit-
ten as

(35 cos*a— 30 cos’a + 3). (4.36)

mFgff{w%JM+%ﬁm¢uﬂ
0 J0

(A%) 4
52

+$gﬁu—ﬂﬂmxnﬁw+

AZ
+cos 2,@(1‘,3 + %zﬁ(r)l‘ﬂ‘) +cos 4,u,u,’(r)lvs] }

‘ﬁ(i’)lv2

X cos[hr cos a]r’sin adrda. (4.37)

If ¢;; is random, g(r) becomes zero. In this case,
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™[ 4
Iy, =K f f {<n2>auv(r)+Eﬁzf(r)r,jﬂ’(r)}
0 J0

Xcos[hr cos a]r’sin adrde. (4.38)

This equation can be integrated by « and reduces to Eq. (1.2)
derived by Stein and Wilson [2]. Thus, Eq. (1.7) can be ob-
tained automatically.

Here it should be noted that Egs. (1.1) and (1.2) derived
by Stein and Wilson [2] have no u dependence. The differ-
ence between their treatment and the present one is the se-
lection of coordinates. They adopted the coordinates shown
in Fig. 6. In their model system, w; is related to the X5 axis
instead of the Vj axis, which is essentially unfavorable to
provide the orientation correlation function f(r) in relation to
the scalar distance r between the two elements. Conse-
quently, even if ¢;; is related to the volume elements (i and ;)
separated by a constant scalar distance r [see Eq. (4.28)], any
p dependence cannot be formulated on the basis of their
model system in Fig. 6. When the present system shown in
Fig. 4 is adopted, the mathematical treatment is extremely
complicated because of complicated transformations of the
coordinates in Fig. 5, and then the mathematical derivations
in the present paper must be pursued by using a computer.

V. RESULTS AND DISCUSSION

As shown in Fig. 2, the Huv scattering from anisotropic
gels showed an X-type pattern. The numerical calculation of
Hu scattering patterns is also favorable to avoid various se-
lections of the parameters. Here we must emphasize again
that the azimuthal angle ¢;; must be correlated with the dis-
tance between the two scattering elements. If not, g(r) with a
random orientation becomes zero. In this case, any u depen-
dence of the scattered intensity distribution cannot be real-
ized as described already. Equation (4.29) can be integrated
by r, and after that the integration for « must be carried out
by a computer as a numerical calculation. In doing so, f(r)
and g(r) are given as a Gaussian function as follows:

fr)= <—;3 08"y~ 1> =exp(— r_z)
p a

5 (5.1)

and

2
g(r)={2 cosz¢,-j -1),= exp(— l%) (5.2)

}"2
f(r)g(r):exp{— (i+#>} =exp<— ;) (5.3)

Of course, f(r) satisfies unity at r—0 and 0 at r— oo,
indicating a random correlation of the principal optical axes,
and g(r) also satisfies the above condition. Judging from Eq.
(4.29), f(r) and g(r) are sensitive to the profile of the scat-
tering pattern, while, as described already, u'(r) is indepen-
dent of the azimuthal angle. Hence w'(r) is assumed to be a
constant to simplify the analysis of the scattering patterns by

Then,
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FIG. 7. Hv light scattering patterns calculated by Eq. (4.29) as a
function of b/a: (a) 1, (b) 3, (¢) 5, and (d) 10 at a/\=1.

avoiding an increase in the parameters. By substituting Egs.
(5.1)—(5.3) into Eq. (4.29), we have

1=k [ ggenl- b el - ) )
= —exp|l — — exp| = — i
Hy o 1607 P\ 4 )T T 5760 P\ T 4 )\ 03)

(C3>I + ! sin?2u| ex (—yz>
a3) T 4608 M| P\ T 4
2

ool -5
5760 P\™ 4

b 2\ .
X e —exp N\ Iy, sin ada, (5.4)
where
IH1=2—.X2, (55)
Iy, = 11(y*-2) +5(2—y2)[cos4a+6 cos’a
4 4 2
—cos 5(5 cos"a+6cosca—23) |, (5.6)
IHE:11(z3—2)+5(2—z2){cos4a+6cos2a
20 4 2
—cos 5(5 cos"a+6 cos“a—13) |, (5.7)
40 2 4 2
Iy,=cos E(Z—y )(35cos’a—30cos“a+3), (5.8)
where
d7a . 0
X=——sin—cos «, (5.9)
A 2
y=—sinzcos a, .
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b/a=10

FIG. 8. Hu light scattering patterns calculated by Eq. (4.29) as a
function of b/a: (a) 1, (b) 3, (c) 5, and (d) 10 at a/\=2.

dme . 0 511
z=— —sin_cos a, (5.11)

Figures 7-9 show the Huv scattering patterns calculated at
a/\=1, 2, and 3. Furthermore, the values of parameter b/a
are chosen to be 1, 3, 5, and 10. The pattern is sensitive to
b/a. With increasing b/a, the pattern shows considerable u
dependence to give an X type. At b/a=1, the pattern shows
a circular type, indicating no u dependence. This tendency is
independent of the values of a/\. This means that the pattern
shows a circular type when the correlation functions of f(r)
and g(r) are the same profile. This is an interesting phenom-
enon.

Comparing the calculated patterns with observed patterns
in Fig. 2, the correlation of the distance for the azimuthal
angle ¢;; [see Figs. 4 and 5(a)] becomes higher with elapsing
time. Of course, the decrease in the rotational effect of d),-_,«
means that molecular chains within gel become less active

210
PR !

=
NS ‘l/

b/a=5 b/a=10

FIG. 9. Hu light scattering patterns calculated by Eq. (4.29) as a
function of b/a: (a) 1, (b) 3, (c) 5, and (d) 10 at a/\=3.
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with elapsing time, since the gel becomes stiffer with in-
creasing junction points. Certainly, no existence of aniso-
tropic rods within the gel was confirmed under polarized
microscopy, when the corresponding pattern showed an X
type. A series of calculations indicates that the X-type pat-
terns under Hv polarization conditions, which have been ob-
served for polymer gels prepared by quenching solutions to
desired temperature, is attributed to the high correlations be-
tween the scattering elements but is independent of the exis-
tence of the anisotropic rods. The change from a circular to
an X-type pattern with elapsing time reflects the formation
process of gel structure in polymer-rich phases appearing by
phase separation of the agarose solution when quenching
from 80 to 30 °C. Incidentally, the theory of the present pa-
per can be applied to any anisotropic systems with orienta-
tion fluctuations between scattering elements.

VI. CONCLUSION

Hu light scattering patterns were observed under the ge-
lation process when agarose solution was quenched to a de-
sired temperature. The Hv scattering showed an indistinct
circular-type pattern in the initial stage and the pattern
changed to an X-type pattern with elapsing time. The scat-
tered intensity was very weak, and any anisotropic rods
within the gel could not be observed under polarized micros-
copy. To analyze such an X-type pattern, an approach was

PHYSICAL REVIEW E 72, 041403 (2005)

proposed to calculate the polarized scattered intensity under
Hv and Vv polarization conditions. In the proposed model
system, two correlation functions concerning correlated ori-
entation fluctuations and correlated rotational fluctuations
were introduced. As a correlated orientation fluctuation, the
difference between polar angles of the principal axes of ith
and jth elements defined with respect to the axis along the
distance between the two elements was given as a correlation
of the distance between the two elements. As a correlated
rotational fluctuation, the azimuthal angle, which the projec-
tion of the jth principal axis onto a plane perpendicular to the
principal axis of the ith element makes, was also given as the
distance between the two elements. The proposed equations
for Hv and Vv scattering conditions were given as a function
of the polar angle and azimuthal angle. Such an analysis is
based on a general concept such as a statistical approach. In
the absence of the correlation of the distance for the azi-
muthal angle, the reduced equations were equivalent to the
equations proposed by Stein and Wilson [2]. The Hv scatter-
ing patterns formulated with the above two correlations
showed an X-type pattern and were in good agreement with
the patterns observed from polymer gels prepared by
quenching their solutions to the desired temperatures. This
indicated that molecular chains within the gel become less
active with elapsing time, since the gel becomes stiffer with
increasing junction points.
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